0%

Problem 688


Problem 688


Piles of Plates

We stack n plates into k non-empty piles where each pile is a different size. Define f(n,k) to be the maximum number of plates possible in the smallest pile. For example when n=10 and k=3 the piles 2,3,5 is the best that can be done and so f(10,3)=2. It is impossible to divide 10 into 5 non-empty differently-sized piles and hence f(10,5)=0.

Define F(n) to be the sum of f(n,k) for all possible pile sizes k1. For example F(100)=275.

Further define S(N)=n=1NF(n). You are given S(100)=12656.

Find S(1016) giving your answer modulo 1 000 000 007.


盘子分堆

n个盘子分为k堆,每一堆既不能为空,也不能与另一堆有相同数量的盘子,并记f(n,k)为所有分法中最少的那堆可能分得的最大盘子数量。例如,若n=10k=3,那么最理想的分法是2,3,5,因此f(10,3)=2。由于无法将10个盘子按照上述要求分为5堆,因此f(10,5)=0

F(n)为所有堆数k1f(n,k)之和。例如,F(100)=275

再记S(N)=n=1NF(n)。已知S(100)=12656

S(1016)并将你的答案对1 000 000 007取余。


Gitalking ...