0%

Problem 693


Problem 693


Finite Sequence Generator

Two positive integers x and y (x>y) can generate a sequence in the following manner:

  • ax=y is the first term,
  • az+1=az2modz for z=x,x+1,x+2, and
  • the generation stops when a term becomes 0 or 1.

The number of terms in this sequence is denoted l(x,y).

For example, with x=5 and y=3, we get a5=3, a6=32mod5=4, a7=42mod6=4, etc. Giving the sequence of 29 terms:
3,4,4,2,4,7,9,4,4,3,9,6,4,16,4,16,16,4,16,3,9,6,10,19,25,16,16,8,0
Hence l(5,3)=29.

g(x) is defined to be the maximum value of l(x,y) for y<x. For example, g(5)=29.

Further, define f(n) to be the maximum value of g(x) for xn. For example, f(100)=145 and f(10 000)=8824.

Find f(3 000 000).


有限数列生成器

对两个任意正整数xy(其中x>y),可以按照如下方式生成数列:

  • 数列的第一项为ax=y
  • 对于z=x,x+1,x+2,,令az+1=az2modz
  • 当某一项为01时停止。

当序列停止时,记l(x,y)为此时序列中的项数。

例如,若x=5y=3,那么依次生成的项分别是a5=3a6=32mod5=4a7=42mod6=4,依此类推,前29项分别是:
3,4,4,2,4,7,9,4,4,3,9,6,4,16,4,16,16,4,16,3,9,6,10,19,25,16,16,8,0
因此l(5,3)=29

g(x)在所有y<xl(x,y)的最大值。例如,g(5)=29

f(n)为所有xng(x)的最大值。例如,f(100)=145f(10 000)=8824

f(3 000 000)


0 comments
Anonymous
Markdown is supported

Be the first person to leave a comment!