0%

Problem 697


Problem 697


Randomly Decaying Sequence

Given a fixed real number c, define a random sequence (Xn)n0 by the following random process:

  • X0=c (with probability 1).
  • For n>0, Xn=UnXn1 where Un is a real number chosen at random between zero and one, uniformly, and independently of all previous choices (Um)m<n.

If we desire there to be precisely a 25 probability that X100<1, then this can be arranged by fixing c such that log10c46.27.

Suppose now that c is set to a different value, so that there is precisely a 25 probability that X10 000 000<1.

Find log10c and give your answer rounded to two places after the decimal point.


随机递减序列

给定实数c,如下的随机过程可以生成一个随机序列(Xn)n0

  • X0=c (概率为1)。
  • 对于所有n>0Xn=UnXn1,其中Un是在01之间均匀随机选择的实数,且与之前所有的(Um)m<n独立。

如果我们希望X100<1的概率恰好为25,我们只需选择满足log10c46.27的实数c

假设现在我们希望X10 000 000<1的概率恰好为 25,我们需要给c选择一个不同的数值。

log10c并将你的答案保留小数点后两位。


Gitalking ...