0%

Problem 698


Problem 698


123-Numbers

We define 123-numbers as follows:

  • 1 is the smallest 123-number.
  • When written in base 10 the only digits that can be present are “1”, “2” and “3” and if present the number of times they each occur is also a 123-number.

So 2 is a 123-number, since it consists of one digit “2” and 1 is a 123-number. Therefore, 33 is a 123-number as well since it consists of two digits “3” and 2 is a 123-number.
On the other hand, 1111 is not a 123-number, since it contains 4 digits “1” and 4 is not a 123-number.

In ascending order, the first 123-numbers are:
1,2,3,11,12,13,21,22,23,31,32,33,111,112,113,121,122,123,131,

Let F(n) be the n-th 123-number. For example F(4)=11, F(10)=31, F(40)=1112, F(1000)=1223321 and F(6000)=2333333333323.

Find F(111 111 111 111 222 333). Give your answer modulo 123 123 123.


123-数

123-数的定义如下:

  • 1是最小的123数。
  • 10进制下,这个数只由数字”1”、”2”和”3”组成,且这些数字要么不出现,要么其出现次数也是123-数。

所以,2是个123-数,因为它包含一个”2”而1是个123-数。进而33也是个123-数,因为它包含两个”3”而2是个123-数。
反之,1111不是个123-数,因为它包含4个”1”而4不是个123-数。

将所有123-数从小到大排列,最初的一部分是:
1,2,3,11,12,13,21,22,23,31,32,33,111,112,113,121,122,123,131,

F(n)为第n123-数。例如,F(4)=11F(10)=31F(40)=1112F(1000)=1223321F(6000)=2333333333323

F(111 111 111 111 222 333),并将你的答案对123 123 123取余。


Gitalking ...