0%

Problem 703


Problem 703


Circular Logic II

Given an integer n, n3, let B=false,true and let Bn be the set of sequences of n values from B. The function f from Bn to Bn is defined by f(b1bn)=c1cn where:

  • ci=bi+1 for 1i<n.
  • cn=b1 AND (b2 XOR b3), where AND and XOR are the logical AND and exclusive OR operations.

Let S(n) be the number of functions T from Bn to B such that for all x in Bn, $T(x) \mathrm{AND} T(f(x)) = \mathrm{false}.YouaregiventhatS(3) = 35andS(4) = 2118$.

Find S(20). Give your answer modulo 1 001 001 011.


圆环之理II

给定整数nn3,令B=false,trueBn为从B中选择n个值所组成的序列。由Bn映射到Bn的函数f,记为f(b1bn)=c1cn,满足以下条件:

  • 对于1i<nci=bi+1
  • cn=b1 AND (b2 XOR b3),其中ANDXOR 分别是逻辑与和逻辑异或运算。

考虑由Bn映射到B的函数T,对于任意x属于Bn满足$T(x) \mathrm{AND} T(f(x)) = \mathrm{false}S(n)S(3) = 35S(4) = 2118$。

S(20),并将你的答案对1 001 001 011取余。


0 comments
Anonymous
Markdown is supported

Be the first person to leave a comment!