Problem 704 题目发布于 2020-03-01 翻译更新于 2020-11-17 Problem 704 Factors of Two in Binomial CoefficientsDefine g(n,m) to be the largest integer k such that 2k divides (nm). For example, (125)=792=23⋅32⋅11, hence g(12,5)=3. Then define F(n)=maxg(n,m):0≤m≤n. F(10)=3 and F(100)=6. Let S(N) = ∑n=1NF(n). You are given that S(100)=389 and S(107)=203222840. Find S(1016). 二项式系数中的质因数二记g(n,m)为使得2k整除(nm)的最大整数k。例如,(125)=792=23⋅32⋅11,因此g(12,5)=3。再定义F(n)=maxg(n,m):0≤m≤n。已知F(10)=3,F(100)=6。 记S(N) = ∑n=1NF(n)。已知S(100)=389,S(107)=203222840。 求S(1016)。
Gitalking ...