0%

Problem 710


Problem 710


One Million Members

On Sunday 5 April 2020 the Project Euler membership first exceeded one million members. We would like to present this problem to celebrate that milestone. Thank you to everyone for being a part of Project Euler.

The number 6 can be written as a palindromic sum in exactly eight different ways:
(1,1,1,1,1,1),(1,1,2,1,1),(1,2,2,1),(1,4,1),(2,1,1,2),(2,2,2),(3,3),(6)

We shall define a twopal to be a palindromic tuple having at least one element with a value of 2. It should also be noted that elements are not restricted to single digits. For example, (3,2,13,6,13,2,3) is a valid twopal.

If we let t(n) be the number of twopals whose elements sum to n, then it can be seen that t(6)=4:
(1,1,2,1,1),(1,2,2,1),(2,1,1,2),(2,2,2)

Similarly, t(20)=824.

In searching for the answer to the ultimate question of life, the universe, and everything, it can be verified that t(42)=1999923, which happens to be the first value of t(n) that exceeds one million.

However, your challenge to the “ultimatest” question of life, the universe, and everything is to find the least value of n>42 such that t(n) is divisible by one million.


一百万名用户

2020年4月5日星期日,欧拉计划的用户突破了一百万人。我们设计了本题以纪念这一里程碑。感谢各位参与欧拉计划!

6写成一个回文数组的元素之和,共有八种不同的方式:
(1,1,1,1,1,1),(1,1,2,1,1),(1,2,2,1),(1,4,1),(2,1,1,2),(2,2,2),(3,3),(6)

如果一个回文数组中至少有一个元素2,则称之为二回数组。注意数组的元素并未被限定为一位数,例如,(3,2,13,6,13,2,3)也是一个合法的二回数组。

t(n)为元素之和为n的二回数组的数目,可以看出t(6)=4
(1,1,2,1,1),(1,2,2,1),(2,1,1,2),(2,2,2)

类似地,t(20)=824

在寻找生命、宇宙以及任何事情的终极答案的过程中,我们发现t(42)=1999923,这恰好是第一个超过一百万的t(n)

你的新挑战是,寻找生命、宇宙以及任何事情的“最终极”答案:在n>42中,找出最小的使得t(n)被一百万整除的数n


Gitalking ...