0%

Problem 717


Problem 717


Summation of a Modular Formula

For an odd prime p, define f(p)=2(2p)pmod2p.
For example, when p=3, 28/3=855(mod8) and so f(3)=5.

Further define g(p)=f(p)modp. You are given g(31)=17.

Now define G(N) to be the summation of g(p) for all odd primes less than N.
You are given G(100)=474 and G(104)=2819236.

Find G(107).


余数求和

对于奇素数p,记f(p)=2(2p)pmod2p
例如,若p=328/3=855(mod8),因此f(3)=5

g(p)=f(p)modp。已知g(31)=17

G(N)为所有小于N的奇素数p所对应g(p)之和。
已知G(100)=474G(104)=2819236

G(107)


Gitalking ...