0%

Problem 722


Problem 722


Slowly converging series

For a non-negative integer k, define
Ek(q)=n=1σk(n)qn
where σk(n)=dndk is the sum of the k-th powers of the positive divisors of n.

It can be shown that, for every k, the series Ek(q) converges for any 0<q<1.

For example,
E1(1124)=3.872155809243e2
E3(1128)=2.767385314772e10
E7(11215)=6.725803486744e39
All the above values are given in scientific notation rounded to twelve digits after the decimal point.

Find the value of E15(11225).
Give the answer in scientific notation rounded to twelve digits after the decimal point.


缓慢收敛级数

对于非负整数k,记
Ek(q)=n=1σk(n)qn
其中σk(n)=dndk表示n的所有正约数的k次幂之和。

可以证明,对于所有k和任意0<q<1,级数Ek(q)始终收敛。

例如,
E1(1124)=3.872155809243e2
E3(1128)=2.767385314772e10
E7(11215)=6.725803486744e39
上述取值均以科学计数法表示并保留小数点后十二位。

E15(11225)的值,以科学计数法表示并保留小数点后十二位。


Gitalking ...