Pythagorean Quadrilaterals
A pythagorean triangle with catheti and and hypotenuse is characterized by the well-known equation . However, this can also be formulated differently:
When inscribed into a circle with radius , a triangle with sides , and is pythagorean, if and only if .
Analogously, we call a quadrilateral with sides , , and , inscribed in a circle with radius , a pythagorean quadrilateral, if .
We further call a pythagorean quadrilateral a pythagorean lattice grid quadrilateral, if all four vertices are lattice grid points with the same distance from the origin (which then happens to be the centre of the circumcircle).
Let be the number of different pythagorean lattice grid quadrilaterals for which the radius of the circumcircle is . For example , , and .
Two of the pythagorean lattice grid quadrilaterals with are illustrated below:


Let . For example, and .
Find .
毕达哥拉斯四边形
若一个毕达哥拉斯三角形也即直角三角形的直角边为和,斜边为,则它们满足著名的勾股定理。不过,它们同时也满足另外一条公式:
若一个三边长为、、的三角形内接于一个半径为的圆,当且仅当时这个三角形是毕达哥拉斯三角形。
类似地,若一个四边长为、、、的四边形内接于一个半径为的圆,且满足,则我们称之为毕达哥拉斯四边形。
进一步地,如果这个毕达哥拉斯四边形的四个顶点都在格点上,且距离原点的距离均为(此时原点恰好也是圆心),则称之为毕达哥拉斯格点四边形。
记为内接于半径为的圆中的不同毕达哥拉斯格点四边形的数目。例如,,,,。
如下图所示为两个时的毕达哥拉斯格点四边形:


记。例如,,。
求。
Gitalking ...