0%

Problem 723


Problem 723


Pythagorean Quadrilaterals

A pythagorean triangle with catheti a and b and hypotenuse c is characterized by the well-known equation a2+b2=c2. However, this can also be formulated differently:
When inscribed into a circle with radius r, a triangle with sides a, b and c is pythagorean, if and only if a2+b2+c2=8 r2.

Analogously, we call a quadrilateral ABCD with sides a, b, c and d, inscribed in a circle with radius r, a pythagorean quadrilateral, if a2+b2+c2+d2=8 r2.
We further call a pythagorean quadrilateral a pythagorean lattice grid quadrilateral, if all four vertices are lattice grid points with the same distance r from the origin O (which then happens to be the centre of the circumcircle).

Let f(r) be the number of different pythagorean lattice grid quadrilaterals for which the radius of the circumcircle is r. For example f(1)=1, f(2)=1, f(5)=38 and f(5)=167.
Two of the pythagorean lattice grid quadrilaterals with r=5 are illustrated below:

PythagoreanQ_1

PythagoreanQ_2

Let S(n)=d|nf(d). For example, S(325)=S(5213)=f(1)+f(5)+f(5)+f(13)+f(65)+f(513)=2370 and S(1105)=S(51317)=5535.

Find S(1411033124176203125)=S(561331722937415361).


毕达哥拉斯四边形

若一个毕达哥拉斯三角形也即直角三角形的直角边为ab,斜边为c,则它们满足著名的勾股定理a2+b2=c2。不过,它们同时也满足另外一条公式:
若一个三边长为abc的三角形内接于一个半径为r的圆,当且仅当a2+b2+c2=8 r2时这个三角形是毕达哥拉斯三角形。

类似地,若一个四边长为abcd的四边形ABCD内接于一个半径为r的圆,且满足a2+b2+c2+d2=8 r2,则我们称之为毕达哥拉斯四边形
进一步地,如果这个毕达哥拉斯四边形的四个顶点都在格点上,且距离原点O的距离均为r(此时原点恰好也是圆心),则称之为毕达哥拉斯格点四边形

f(r)为内接于半径为r的圆中的不同毕达哥拉斯格点四边形的数目。例如,f(1)=1f(2)=1f(5)=38f(5)=167
如下图所示为两个r=5时的毕达哥拉斯格点四边形:

毕达哥拉斯格点四边形1

毕达哥拉斯格点四边形2

S(n)=d|nf(d)。例如,S(325)=S(5213)=f(1)+f(5)+f(5)+f(13)+f(65)+f(513)=2370S(1105)=S(51317)=5535

S(1411033124176203125)=S(561331722937415361)


Gitalking ...