0%

Problem 730


Problem 730


Shifted Pythagorean Triples

For a non-negative integer k, the triple (p,q,r) of positive integers is called a k-shifted Pythagorean triple if p2+q2+k=r2

(p,q,r) is said to be primitive if gcd(p,q,r)=1.

Let Pk(n) be the number of primitive k-shifted Pythagorean triples such that 1pqr and p+q+rn.
For example, P0(104)=703 and P20(104)=1979.

Define
S(m,n)=k=0mPk(n)
You are given that S(10,104)=10956.

Find S(102,108).


移位勾股数

对于非负整数k,若正整数三元组(p,q,r)满足
p2+q2+k=r2
则称之为k-移位勾股数。若进一步地(p,q,r)满足gcd(p,q,r)=1,则称为k-移位本原勾股数。

Pk(n)为满足1pqrp+q+rnk-移位本原勾股数的数目。
例如,P0(104)=703P20(104)=1979


S(m,n)=k=0mPk(n)
已知S(10,104)=10956

S(102,108)


Gitalking ...