0%

Problem 733


Problem 733


Ascending subsequences

Let ai be the sequence defined by ai=153imod10 000 019 for i1.
The first terms of ai are: 153,23409,3581577,7980255,976697,9434375,

Consider the subsequences consisting of 4 terms in ascending order. For the part of the sequence shown above, these are:
153,23409,3581577,7980255
153,23409,3581577,9434375
153,23409,7980255,9434375
153,23409,976697,9434375
153,3581577,7980255,9434375 and
23409,3581577,7980255,9434375.

Define S(n) to be the sum of the terms for all such subsequences within the first n terms of ai. Thus S(6)=94513710.
You are given that S(100)=4465488724217.

Find S(106) modulo 1 000 000 007.


递增子序列

对于任意i1,序列ai满足ai=153imod10 000 019
该序列的一开始几项为:153,23409,3581577,7980255,976697,9434375,

考虑该序列长度为4的递增子序列。只看上面列出的几项,这样的子序列包括:
153,23409,3581577,7980255
153,23409,3581577,9434375
153,23409,7980255,9434375
153,23409,976697,9434375
153,3581577,7980255,9434375
23409,3581577,7980255,9434375

S(n)为序列ai的前n项中,此类子序列的各项之和。因此S(6)=94513710
已知S(100)=4465488724217

S(106)并对1 000 000 007取余。


Gitalking ...