0%

Problem 736


Problem 736


Paths to Equality

Define two functions on lattice points:
r(x,y)=(x+1,2y)
s(x,y)=(2x,y+1)

A path to equality of length n for a pair (a,b) is a sequence ((a1,b1),(a2,b2),,(an,bn)), where:

  • (a1,b1)=(a,b)
  • (ak,bk)=r(ak1,bk1) or (ak,bk)=s(ak1,bk1) for k>1
  • akbk for k<n
  • an=bn

an=bn is called the final value.

For example,
(45,90)r(46,180)s(92,181)s(184,182)s(368,183)s(736,184)r
(737,368)s(1474,369)r(1475,738)r(1476,1476)

This is a path to equality for (45,90) and is of length 10 with final value 1476. There is no path to equality of (45,90) with smaller length.

Find the unique path to equality for (45,90) with smallest odd length. Enter the final value as your answer.


趋等路径

对格点定义如下两个函数:
r(x,y)=(x+1,2y)
s(x,y)=(2x,y+1)

对于数对(a,b),一条长度为n趋等路径是指满足如下条件的序列((a1,b1),(a2,b2),,(an,bn))

  • (a1,b1)=(a,b)
  • 对于所有k>1(ak,bk)=r(ak1,bk1)(ak,bk)=s(ak1,bk1)
  • 对于所有k<nakbk
  • an=bn

an=bn被称为该路径的终值

例如,
(45,90)r(46,180)s(92,181)s(184,182)s(368,183)s(736,184)r
(737,368)s(1474,369)r(1475,738)r(1476,1476)
这是数对(45,90)的一条趋等路径,其长度为10,终值为1476。对于数对(45,90),不存在更短的趋等路径。

对于数对(45,90),求其长度为奇数的趋等路径中唯一最短的那条,并将其终值作为你的答案。


Gitalking ...