0%

Problem 738


Problem 738


Counting Ordered Factorisations

Define d(n,k) to be the number of ways to write n as a product of k ordered integers
n=x1×x2×x3××xk1x1x2xk

Further define D(N,K) to be the sum of d(n,k) for 1nN and 1kK.

You are given that D(10,10)=153 and D(100,100)=35384.

Find D(1010,1010) giving your answer modulo 1 000 000 007.


有序因数分解计数

d(n,k)为将n表示为k个递增整数之积的方式数
n=x1×x2×x3××xk1x1x2xk

再记D(N,K)为所有1nN1kK对应的d(n,k)之和。

已知D(10,10)=153D(100,100)=35384

D(1010,1010),并将你的答案对1 000 000 007取余。


Gitalking ...