0%

Problem 751


Problem 751


Concatenation Coincidence

A non-decreasing sequence of integers an can be generated from any positive real value θ by the following procedure:

b1=θ
bn=bn1(bn1bn1+1) n2
an=bn
Where . is the floor function.

For example, θ=2.956938891377988 generates the Fibonacci sequence: 2,3,5,8,13,21,34,55,89,

The concatenation of a sequence of positive integers an is a real value denoted τ constructed by concatenating the elements of the sequence after the decimal point, starting at a1: a1.a2a3a4

For example, the Fibonacci sequence constructed from θ=2.956938891377988 yields the concatenation τ=2.3581321345589 Clearly, τθ for this value of θ.

Find the only value of θ for which the generated sequence starts at a1=2 and the concatenation of the generated sequence equals the original value: τ=θ. Give your answer rounded to 24 places after the decimal point.


拼接巧合

给定任意正实数θ,根据以下过程可以生成一个不下降的整数序列an

b1=θ
bn=bn1(bn1bn1+1) n2
an=bn
其中.表示下取整函数。

例如,θ=2.956938891377988能够生成斐波那契数列:2,3,5,8,13,21,34,55,89,

数列an拼接是指将a1作为整数部分、将序列的其它元素拼接作为小数部分所生成的实数,记为τ

例如,由θ=2.956938891377988构造的斐波那契数列,其拼接即为τ=2.3581321345589。显然,对于θ的这一取值,有τθ

对于所有生成序列中a1=2θ,求出唯一使得生成序列的拼接恰好等于原实数,也即使得τ=θθ的取值,并将你的答案保留小数点后24位。


Gitalking ...