Powers of
When is raised to an integral power, , we always get a number of the form .
We write .
For a given number we define to be the smallest positive integer such that:
and if there is no such value of . For example, , .
Further define
You are given and .
Find .
的幂
对于任意正整数,的次幂总能写成的形式。
我们记。
给定正整数,我们记为满足下列条件的最小正整数:
若不存在这样的,则。例如,,。
进一步记
已知,。
求。
Gitalking ...