0%

Problem 752


Problem 752


Powers of 1+7

When (1+7) is raised to an integral power, n, we always get a number of the form (a+b7).
We write (1+7)n=α(n)+β(n)7.

For a given number x we define g(x) to be the smallest positive integer n such that:
α(n)1(modx)andβ(n)0(modx)
and g(x)=0 if there is no such value of n. For example, g(3)=0, g(5)=12.

Further define
G(N)=x=2Ng(x)
You are given G(102)=28891 and G(103)=13131583.

Find G(106).


1+7的幂

对于任意正整数n(1+7)n次幂总能写成(a+b7)的形式。
我们记(1+7)n=α(n)+β(n)7

给定正整数x,我们记g(x)为满足下列条件的最小正整数n
α(n)1(modx)andβ(n)0(modx)
若不存在这样的n,则g(x)=0。例如,g(3)=0g(5)=12

进一步记
G(N)=x=2Ng(x)
已知G(102)=28891G(103)=13131583

G(106)


Gitalking ...