0%

Problem 753


Problem 753


Fermat Equation

Fermat’s Last Theorem states that no three positive integers a, b, c satisfy the equation
an+bn=cn
for any integer value of n greater than 2.

For this problem we are only considering the case n=3. For certain values of p, it is possible to solve the congruence equation:
a3+b3c3(modp)

For a prime p, we define F(p) as the number of integer solutions to this equation for 1a,b,c<p.

You are given F(5)=12 and F(7)=0.

Find the sum of F(p) over all primes p less than 6 000 000.


费马方程

费马大定理指出,不存在正整数abc满足方程
an+bn=cn
其中n为大于2的正整数。

在本题中我们只考虑n=3的情况。对于特定的p,如下的同余方程可能有解:
a3+b3c3(modp)

对于素数p,我们记F(p)为上述同余方程满足1a,b,c<p的整数解的数目。

已知F(5)=12F(7)=0

求出所有小于6 000 000的素数p所对应F(p)之和。


Gitalking ...