0%

Problem 756


Problem 756


Approximating a Sum

Consider a function f(k) defined for all positive integers k>0. Let S be the sum of the first n values of f. That is,
S=f(1)+f(2)+f(3)++f(n)=k=1nf(k)

In this problem, we employ randomness to approximate this sum. That is, we choose a random, uniformly distributed, m-tuple of positive integers (X1,X2,X3,,Xm) such that 0=X0<X1<X2<<Xmn and calculate a modified sum S as follows.
S=i=1mf(Xi)(XiXi1)

We now define the error of this approximation to be Δ=SS.

Let E(Δ|f(k),n,m) be the expected value of the error given the function f(k), the number of terms n in the sum and the length of random sample m.

For example, E(Δ|k,100,50)=2525/13261.904223 and E(Δ|φ(k),104,102)5842.849907, where φ(k) is Euler’s totient function.

Find E(Δ|φ(k),12345678,12345) rounded to six places after the decimal point.


近似求和

考虑定义在所有正整数k>0上的函数f(k)。记S为函数f在前n个正整数上的取值之和。也就是说,
S=f(1)+f(2)+f(3)++f(n)=k=1nf(k)

在本题中,我们加入一些随机性来近似地求和。换言之,我们均匀地随机生成一个m元正整数组(X1,X2,X3,,Xm),且该数组满足0=X0<X1<X2<<Xmn,然后按照以下方式求出近似和S
S=i=1mf(Xi)(XiXi1)

我们定义近似误差为Δ=SS

给定函数f(k)、所需计算的项数n和随机数组的长度m,记E(Δ|f(k),n,m)为近似误差的期望值。

例如,E(Δ|k,100,50)=2525/13261.904223E(Δ|φ(k),104,102)5842.849907,其中φ(k)为欧拉总计函数。

E(Δ|φ(k),12345678,12345),并将你的答案保留小数点后六位。


Gitalking ...