Problem 759 题目发布于 2021-06-12 翻译更新于 2021-09-08 Problem 759 A squared recurrence relationThe function f is defined for all positive integers as follows:f(1)=1f(2n)=2f(n)f(2n+1)=2n+1+2f(n)+1nf(n)It can be proven that f(n) is integer for all values of n. The function S(n) is defined as S(n)=∑i=1nf(i)2. For example, S(10)=1530 and S(102)=4798445. Find S(1016). Give your answer modulo 1 000 000 007. 递推数列的平方和定义在正整数上的函数f满足以下递推关系:f(1)=1f(2n)=2f(n)f(2n+1)=2n+1+2f(n)+1nf(n)可以证明,对于任意n,f(n)的取值均为整数。 再定义函数S(n)为S(n)=∑i=1nf(i)2。 例如,S(10)=1530,S(102)=4798445。 求S(1016),并将你的答案对1 000 000 007取余。
Gitalking ...