0%

Problem 759


Problem 759


A squared recurrence relation

The function f is defined for all positive integers as follows:
f(1)=1
f(2n)=2f(n)
f(2n+1)=2n+1+2f(n)+1nf(n)
It can be proven that f(n) is integer for all values of n.

The function S(n) is defined as S(n)=i=1nf(i)2.

For example, S(10)=1530 and S(102)=4798445.

Find S(1016). Give your answer modulo 1 000 000 007.


递推数列的平方和

定义在正整数上的函数f满足以下递推关系:
f(1)=1
f(2n)=2f(n)
f(2n+1)=2n+1+2f(n)+1nf(n)
可以证明,对于任意nf(n)的取值均为整数。

再定义函数S(n)S(n)=i=1nf(i)2

例如,S(10)=1530S(102)=4798445

S(1016),并将你的答案对1 000 000 007取余。


Gitalking ...