Amoebas in a 2D grid
Consider a two dimensional grid of squares. The grid has rows but infinitely many columns.
An amoeba in square can divide itself into two amoebas to occupy the squares and , provided these squares are empty.
The following diagrams show two cases of an amoeba placed in square A of each grid. When it divides, it is replaced with two amoebas, one at each of the squares marked with B:


Originally there is only one amoeba in the square . After divisions there will be amoebas arranged in the grid. An arrangement may be reached in several different ways but it is only counted once. Let be the number of different possible arrangements after divisions.
For example, , , and the last nine digits of are .
Find , enter the last nine digits as your answer.
二维格阵中的阿米巴原虫
考虑一个有行、无穷列的二维格阵。
原本位于方格中的一只阿米巴原虫,在目标方格没有被占据的情况下,可以将自身分裂成两只阿米巴原虫,并分别占据方格和。
在下图所示的两种情况中,一只阿米巴原虫原本位于方格A。在分裂为两只阿米巴原虫后,则分别占据了两个标记有B的方格:


一开始只有一只阿米巴原虫位于方格。经过次分裂之后,格阵中将会分布有只阿米巴原虫。不同的分裂顺序可能形成相同的分布情况,这些分布均算作相同的分布。记为经过次分裂后所有可能的不同分布的总数。
例如,,,,而的最后九位数字是。
求,并将其最后九位数字作为你的答案。
Gitalking ...