0%

Problem 762


Problem 762


Amoebas in a 2D grid

Consider a two dimensional grid of squares. The grid has 4 rows but infinitely many columns.

An amoeba in square (x,y) can divide itself into two amoebas to occupy the squares (x+1,y) and (x+1,(y+1)mod4), provided these squares are empty.

The following diagrams show two cases of an amoeba placed in square A of each grid. When it divides, it is replaced with two amoebas, one at each of the squares marked with B:


Originally there is only one amoeba in the square (0,0). After N divisions there will be N+1 amoebas arranged in the grid. An arrangement may be reached in several different ways but it is only counted once. Let C(N) be the number of different possible arrangements after N divisions.

For example, C(2)=2, C(10)=1301, C(20)=5895236 and the last nine digits of C(100) are 125923036.

Find C(100 000), enter the last nine digits as your answer.


二维格阵中的阿米巴原虫

考虑一个有4行、无穷列的二维格阵。

原本位于方格(x,y)中的一只阿米巴原虫,在目标方格没有被占据的情况下,可以将自身分裂成两只阿米巴原虫,并分别占据方格(x+1,y)(x+1,(y+1)mod4)

在下图所示的两种情况中,一只阿米巴原虫原本位于方格A。在分裂为两只阿米巴原虫后,则分别占据了两个标记有B的方格:


一开始只有一只阿米巴原虫位于方格(0,0)。经过N次分裂之后,格阵中将会分布有N+1只阿米巴原虫。不同的分裂顺序可能形成相同的分布情况,这些分布均算作相同的分布。记C(N)为经过N次分裂后所有可能的不同分布的总数。

例如,C(2)=2C(10)=1301C(20)=5895236,而C(100)的最后九位数字是125923036

C(100 000),并将其最后九位数字作为你的答案。


Gitalking ...