0%

Problem 763


Problem 763


Amoebas in a 3D grid

Consider a three dimensional grid of cubes. An amoeba in cube (x,y,z) can divide itself into three amoebas to occupy the cubes (x+1,y,z), (x,y+1,z) and (x,y,z+1), provided these cubes are empty.

Originally there is only one amoeba in the cube (0,0,0). After N divisions there will be 2N+1 amoebas arranged in the grid. An arrangement may be reached in several different ways but it is only counted once. Let D(N) be the number of different possible arrangements after N divisions.

For example, D(2)=3, D(10)=44499, D(20)=9204559704 and the last nine digits of D(100) are 780166455.

Find D(10 000), enter the last nine digits as your answer.


三维格阵中的阿米巴原虫

考虑一个三维格阵。原本位于方格(x,y,z)中的一只阿米巴原虫,在目标方格没有被占据的情况下,可以将自身分裂成三只阿米巴原虫,并分别占据方格(x+1,y,z)(x,y+1,z)(x,y,z+1)

一开始只有一只阿米巴原虫位于方格(0,0,0)。经过N次分裂之后,格阵中将会分布有2N+1只阿米巴原虫。不同的分裂顺序可能形成相同的分布情况,这些分布均算作相同的分布。记D(N)为经过N次分裂后所有可能的不同分布的总数。

例如,D(2)=3D(10)=44499D(20)=9204559704,而D(100)的最后九位数字是780166455

D(10 000),并将其最后九位数字作为你的答案。


Gitalking ...