0%

Problem 764


Problem 764


Asymmetric Diophantine Equation

Consider the following Diophantine equation:
16x2+y4=z2
where x, y and z are positive integers.

Let S(N)=(x+y+z) where the sum is over all solutions (x,y,z) such that 1x,y,zN and gcd(x,y,z)=1.

For N=100, there are only two such solutions: (3,4,20) and (10,3,41). So S(102)=81.

You are also given that S(104)=112851 (with 26 solutions), and S(107)248876211(mod109).

Find S(1016). Give your answer modulo 109.


不对称丢番图方程

考虑如下的丢番图方程:
16x2+y4=z2
其中xyz均为正整数。

考虑所有满足1x,y,zNgcd(x,y,z)=1的解(x,y,z),记S(N)=(x+y+z)在这些解上求和。

对于N=100,只有两组满足上述条件的解,分别是(3,4,20)(10,3,41),因此S(102)=81

已知S(104)=112851(共有26组解),以及S(107)248876211(mod109)

S(1016),并将你的答案对109取余。


Gitalking ...