0%

Problem 765


Problem 765


Trillionaire

Starting with 1 gram of gold you play a game. Each round you bet a certain amount of your gold: if you have x grams you can bet b grams for any 0bx. You then toss an unfair coin: with a probability of 0.6 you double your bet (so you now have x+b), otherwise you lose your bet (so you now have xb).

Choosing your bets to maximize your probability of having at least a trillion (1012) grams of gold after 1000 rounds, what is the probability that you become a trillionaire?

All computations are assumed to be exact (no rounding), but give your answer rounded to 10 digits behind the decimal point.


万亿富翁

你正在玩一个游戏,游戏开始时你拥有1克黄金。每一轮,如果你拥有x克黄金,那么你可以下注任意0bx克黄金,然后抛掷一枚不公平硬币:有0.6的概率你的赌注双倍奉还(此时你拥有x+b克黄金),其余的情况下则丧失你的赌注(此时你拥有xb克黄金)。

你将进行1000轮游戏,而你的目标是最大化游戏结束时你拥有至少一万亿(1012)克黄金的概率。请问在最优策略下,这个最大化的概率是多少?

假设游戏过程中的每次赌注计算都是精确的(没有四舍五入),但你的答案应当四舍五入至小数点后10位。


Gitalking ...