0%

Problem 769


Problem 769


Binary Quadratic Form II

Consider the following binary quadratic form:

f(x,y)=x2+5xy+3y2

A positive integer q has a primitive representation if there exist positive integers x and y such that q=f(x,y) and gcd(x,y)=1.

We are interested in primitive representations of perfect squares. For example:

172=f(1,9)

872=f(13,40)=f(46,19)

Define C(N) as the total number of primitive representations of z2 for 0<zN.

Multiple representations are counted separately, so for example z=87 is counted twice.

You are given C(103)=142 and C(106)=142463.

Find C(1014).


二元二次型II

考虑如下二元二次型:

f(x,y)=x2+5xy+3y2

对于正整数q,若存在正整数xy使得q=f(x,y)gcd(x,y)=1,则称之为q的本原表达式。

我们感兴趣的是完全平方数的本原表达式。例如:

172=f(1,9)

872=f(13,40)=f(46,19)

C(N)为所有满足0<zN的完全平方数z2的本原表达式数目之和。

同一个数的不同本原表达式单独计入,因此如z=87就有两组本原表达式。

已知C(103)=142C(106)=142463

C(1014)


Gitalking ...