0%

Problem 770


Problem 770


Delphi Flip

A and B play a game. A has originally 1 gram of gold and B has an unlimited amount. Each round goes as follows:

  • A chooses and displays, x, a nonnegative real number no larger than the amount of gold that A has.
  • Either B chooses to TAKE. Then A gives B x grams of gold.
  • Or B chooses to GIVE. Then B gives A x grams of gold.

B TAKEs n times and GIVEs n times after which the game finishes.

Define g(X) to be the smallest value of n so that A can guarantee to have at least X grams of gold at the end of the game. You are given g(1.7)=10.

Find g(1.9999).


狡诈的先知

A和B正在玩一个游戏。游戏开始时,A持有1克黄金,而B则持有无穷的黄金。在每一轮游戏中:

  • A选择并展示一个非负数实数x,且x不超过A持有的黄金数量。
  • B可以选择拿走,此时A必须将x克黄金交给B。
  • B也可以选择赠予,此时B必须将x克黄金交给A。

当B选择了恰好各n拿走赠予后,游戏结束。

g(X)为最小的n,使得A能保证游戏结束时至少持有X克黄金。已知g(1.7)=10

g(1.9999)

译注:本题源自《科学美国人》2001年8月刊同名谜题,大意是赌徒向先知请教接下来数次硬币抛掷的结果,先知虽然能够准确预测未来,但偶尔也会撒谎,赌徒需要决定如何下注以最大化收益。


0 comments
Anonymous
Markdown is supported

Be the first person to leave a comment!