0%

Problem 771


Problem 771


Pseudo Geometric Sequences

We define a pseudo-geometric sequence to be a finite sequence a0,a1,,an of positive integers, satisfying the following conditions:

  • n4, i.e. the sequence has at least 5 terms.
  • 0<a0<a1<<an, i.e. the sequence is strictly increasing.
  • |ai2ai1ai+1|2 for 1in1.

Let G(N) be the number of different pseudo-geometric sequences whose terms do not exceed N.

For example, G(6)=4, as the following 4 sequences give a complete list:

1,2,3,4,51,2,3,4,62,3,4,5,61,2,3,4,5,6

Also, G(10)=26, G(100)=4710 and G(1000)=496805.

Find G(1018). Give your answer modulo 1 000 000 007.


伪等比数列

我们定义满足如下条件的有限正整数数列a0,a1,,an伪等比数列

  • n4,即数列至少有5项。
  • 0<a0<a1<<an,即数列严格递增。
  • 对于1in1,均有|ai2ai1ai+1|2

G(N)为各项均不超过N的不同伪等比数列的总数。

例如,G(6)=4,这4种数列如下所示:

1,2,3,4,51,2,3,4,62,3,4,5,61,2,3,4,5,6

此外还已知G(10)=26G(100)=4710以及G(1000)=496805

G(1018),并将你的答案对1 000 000 007取余。


Gitalking ...