0%

Problem 772


Problem 772


Balanceable k-bounded partitions

A k-bounded partition of a positive integer N is a way of writing N as a sum of positive integers not exceeding k.

A balanceable partition is a partition that can be further divided into two parts of equal sums.

For example, 3+2+2+2+2+1 is a balanceable 3-bounded partition of 12 since 3+2+1=2+2+2. Conversely, 3+3+3+1 is a 3-bounded partition of 10 which is not balanceable.

Let f(k) be the smallest positive integer N all of whose k-bounded partitions are balanceable. For example, f(3)=12 and f(30)179092994(mod1 000 000 007).

Find f(108). Give your answer modulo 1 000 000 007.


可平衡k-有界分拆

正整数N的分拆是指将N写作一系列正整数之和。若这些正整数均不超过k,则称之为k-有界分拆。若这些正整数能分成和相同的两组,则称之为可平衡分拆。

例如,3+2+2+2+2+112的一种可平衡3-有界分拆,因为3+2+1=2+2+2。反之,3+3+3+110的一种3-有界分拆,但不是可平衡分拆。

f(k)是最小的正整数N,使得其所有的k-有界分拆都是可平衡分拆。例如,f(3)=12f(30)179092994(mod1 000 000 007)

f(108),并将你的答案对1 000 000 007取余。


Gitalking ...