0%

Problem 775


Problem 775


Saving Paper

When wrapping several cubes in paper, it is more efficient to wrap them all together than to wrap each one individually. For example, with 10 cubes of unit edge length, it would take 30 units of paper to wrap them in the arrangement shown below, but 60 units to wrap them separately.

Define g(n) to be the maximum amount of paper that can be saved by wrapping n identical 1×1×1 cubes in a compact arrangement, compared with wrapping them individually. We insist that the wrapping paper is in contact with the cubes at all points, without leaving a void.

With 10 cubes, the arrangement illustrated above is optimal, so g(10)=6030=30. With 18 cubes, it can be shown that the optimal arrangement is as a 3×3×2, using 42 units of paper, whereas wrapping individually would use 108 units of paper; hence g(18)=66.

Define
G(N)=n=1Ng(n)
You are given that G(18)=530, and G(106)951640919(mod1 000 000 007).

Find G(1016). Give your answer modulo 1 000 000 007.


节约用纸

在包装多个立方体时,将它们放在一起包装比起分别包装更省纸张。例如,如果有10个单位边长的立方体,按照如下方式堆叠后只需要30单位面积的包装纸,而将它们分别包装则需要60单位面积的包装纸。

g(n)为包装n1×1×1大小的立方体时,采用最紧凑的方式包装相比分别包装最多能省下多少单位面积的包装纸。我们要求包装纸必须和立方体紧密贴合,不能留出空隙。

包装10个立方体时,如上所示的包装方式是最优的,因此g(10)=6030=30。包装18个立方体时,可以证明最优的包装方式是将其堆叠为3×3×2大小,此时需要42单位面积的包装纸,而分别包装则需要108单位面积的包装纸,因此g(18)=66

进一步定义
G(N)=n=1Ng(n)
已知G(18)=530G(106)951640919(mod1 000 000 007)

G(1016),并将你的答案对1 000 000 007取余。


Gitalking ...