0%

Problem 777


Problem 777


Lissajous Curves

For coprime positive integers a and b, let Ca,b be the curve defined by:
x=cos(at)y=cos(b(tπ10))

where t varies between 0 and 2π.

For example, the images below show C2,5 (left) and C7,4 (right):

Define d(a,b)=(x2+y2), where the sum is over all points (x,y) at which Ca,b crosses itself.

For example, in the case of C2,5 illustrated above, the curve crosses itself at two points: (0.31,0) and (0.81,0), rounding coordinates to two decimal places, yielding d(2,5)=0.75. Some other examples are d(2,3)=4.5, d(7,4)=39.5, d(7,5)=52, and d(10,7)=23.25.

Let s(m)=d(a,b), where this sum is over all pairs of coprime integers a,b with 2am and 2bm.
You are given that s(10)=1602.5 and s(100)=24256505.

Find s(106). Give your answer in scientific notation rounded to 10 significant digits; for example s(100) would be given as 2.425650500e7.


利萨茹曲线

对于互质的正整数ab,记Ca,b为由如下参数方程定义的曲线:
x=cos(at)y=cos(b(tπ10))
其中参数t的取值范围是02π

例如,下图所示分别是曲线C2,5(左)和曲线C7,4(右):

对于曲线Ca,b与自身相交产生的所有交点(x,y),记d(a,b)=(x2+y2)

例如,对于如上所示曲线C2,5,其与自身相交产生两个交点:(0.31,0)(0.81,0),均保留两位小数,因此d(2,5)=0.75。此外,d(2,3)=4.5d(7,4)=39.5d(7,5)=52d(10,7)=23.25

对于所有满足2am2bm的互质整数对a,b,记s(m)=d(a,b)
已知s(10)=1602.5s(100)=24256505

s(106)。将你的答案用科学计数法表示并保留10位有效数字;例如,s(100)应表示为2.425650500e7


0 comments
Anonymous
Markdown is supported

Be the first person to leave a comment!