0%

Problem 779


Problem 779


Prime Factor and Exponent

For a positive integer n>1, let p(n) be the smallest prime dividing n, and let α(n) be its p-adic order, i.e. the largest integer such that p(n)α(n) divides n.

For a positive integer K, define the function fK(n) by:

fK(n)=α(n)1(p(n))K

Also define fK by:

fK=limN1Nn=2NfK(n)

It can be verified that f10.282419756159.

Find K=1fK. Give your answer rounded to 12 digits after the decimal point.


质因数及其指数

对于正整数n>1,记p(n)为整除n的最小质数,并记α(n)np进数,也即使得p(n)α(n)整除n的最大整数。

对于正整数K,定义函数fK(n)为:

fK(n)=α(n)1(p(n))K

再定义fK为:

fK=limN1Nn=2NfK(n)

可以验证,f10.282419756159

K=1fK,并将你的答案保留12位小数。


0 comments
Anonymous
Markdown is supported

Be the first person to leave a comment!