0%

Problem 789


Problem 789


Minimal pairing modulo p

Given an odd prime p, put the numbers 1,,p1 into p12 pairs such that each number appears exactly once. Each pair (a,b) has a cost of abmodp. For example, if p=5 the pair (3,4) has a cost of 12mod5=2.

The total cost of a pairing is the sum of the costs of its pairs. We say that such pairing is optimal if its total cost is minimal for that p.

For example, if p=5, then there is a unique optimal pairing: (1,2),(3,4), with total cost of 2+2=4.

The cost product of a pairing is the product of the costs of its pairs. For example, the cost product of the optimal pairing for p=5 is 22=4.

It turns out that all optimal pairings for p=2 000 000 011 have the same cost product.

Find the value of this product.


p余数的最优配对

对于给定的奇质数p,将整数1,,p1分成p12对并保证每个整数只出现一次。每一对(a,b)的成本为abmodp。例如,若p=5,那么整数对(3,4)的成本为12mod5=2

一组配对的总成本是其中每一整数对的成本之和。对于p,我们称总成本最小的配对为最优配对。

例如,若p=5,存在唯一的最优配对(1,2),(3,4),其总成本为2+2=4

一组配对的成本积是其中每一整数对的成本的乘积。例如,上述p=5的最优配对的成本积是22=4

已知p=2 000 000 011的所有最优配对都有相同的成本积。

求该成本积的值。


Gitalking ...