0%

Problem 790


Problem 790


Clock Grid

There is a grid of length and width 50515093 points. A clock is placed on each grid point. The clocks are all analogue showing a single hour hand initially pointing at 12.

A sequence St is created where:
S0=290797St=St12mod50515093t>0
The four numbers Nt=(S4t4,S4t3,S4t2,S4t1) represent a range within the grid, with the first pair of numbers representing the x-bounds and the second pair representing the y-bounds. For example, if Nt=(3,9,47,20), the range would be 3x9 and 20y47, and would include 196 clocks.

For each t (t>0), the clocks within the range represented by Nt are moved to the next hour 1212.

We define C(t) to be the sum of the hours that the clock hands are pointing to after timestep t.
You are given C(0)=30621295449583788, C(1)=30613048345941659, C(10)=21808930308198471 and C(100)=16190667393984172.

Find C(105).


时钟格阵

考虑一个长和宽均包含50515093个点的格阵,每个格点上都放置有一台时钟。所有的时钟盘面上都只包含一根时针,且在开始时时针均指向12

序列St按如下方式定义:
S0=290797St=St12mod50515093t>0
四个数Nt=(S4t4,S4t3,S4t2,S4t1)代表了格阵的一部分,其中第一对数表示横轴的范围,第二对数表示纵轴的范围。例如,若Nt=(3,9,47,20),相应的格阵范围满足3x920y47,其中包含196个时钟。

对于每个t (t>0),包含在上述由Nt描述的格阵范围内的所有时钟均往后拨一小时,也即1212

C(t)为经过第t步后,所有时钟时针所指向的数之和。
已知C(0)=30621295449583788C(1)=30613048345941659C(10)=21808930308198471C(100)=16190667393984172

C(105)


0 comments
Anonymous
Markdown is supported

Be the first person to leave a comment!