0%

Problem 794


Problem 794


Seventeen Points

This problem uses half open interval notation where [a,b) represents ax<b.

A real number, x1, is chosen in the interval [0,1).

A second real number, x2, is chosen such that each of [0,12) and [12,1) contains exactly one of (x1,x2).

Continue such that on the n-th step a real number, xn, is chosen so that each of the intervals [k1n,kn) for k1,,n contains exactly one of (x1,x2,,xn).

Define F(n) to be the minimal value of the sum x1+x2++xn of a tuple (x1,x2,,xn) chosen by such a procedure. For example, F(4)=1.5 obtained with (x1,x2,x3,x4)=(0,0.75,0.5,0.25).

Surprisingly, no more than 17 points can be chosen by this procedure.

Find F(17) and give your answer rounded to 12 decimal places.


十七个点

本题中使用的左闭右开区间记号[a,b)指的是满足ax<b的区间。

在区间[0,1)中选择第一个实数x1

再选择第二个实数x2,满足在区间[0,12)[12,1)上各包含(x1,x2)中的恰好一个实数。

继续这一选择过程,并始终满足在第n步时选择实数xn,使得对于k1,,n,每个区间[k1n,kn)都各包含(x1,x2,,xn)中的恰好一个实数。

F(n)为根据上述流程选择的元组(x1,x2,,xn)之和x1+x2++xn的最小值。例如,F(4)=1.5,其对应的元组为(x1,x2,x3,x4)=(0,0.75,0.5,0.25)

令人惊奇的是,上述流程最多只能选择17个实数。

F(17),并将你的答案保留12位小数。


0 comments
Anonymous
Markdown is supported

Be the first person to leave a comment!