Cyclogenic Polynomials
A monic polynomial is a single-variable polynomial in which the coefficient of highest degree is equal to .
Define to be the set of all monic polynomials with integer coefficients (including the constant polynomial ). A polynomial is cyclogenic if there exists and a positive integer such that . If is the smallest such positive integer then is -cyclogenic.
Define to be the sum of all -cyclogenic polynomials. For example, there exist ten -cyclogenic polynomials (which divide and no smaller ):
giving
Also define
It’s given that and .
Find . Give your answer modulo .
成圆多项式
首一多项式是指最高次项系数为的单变量多项式。
定义为所有整系数首一多项式(包括常数多项式)构成的集合。对于多项式,若存在和正整数使得,则称为成圆多项式。若是满足上述条件的最小正整数,则称是-成圆多项式。
定义为所有-成圆多项式的和。例如,总共有十个-成圆多项式(整除但不整除任意更小的):
因此
再定义
已知和。
求,并将你的答案对取余。
Be the first person to leave a comment!