0%

Problem 797


Problem 797


Cyclogenic Polynomials

A monic polynomial is a single-variable polynomial in which the coefficient of highest degree is equal to 1.

Define F to be the set of all monic polynomials with integer coefficients (including the constant polynomial p(x)=1). A polynomial p(x)F is cyclogenic if there exists q(x)F and a positive integer n such that p(x)q(x)=xn1. If n is the smallest such positive integer then p(x) is n-cyclogenic.

Define Pn(x) to be the sum of all n-cyclogenic polynomials. For example, there exist ten 6-cyclogenic polynomials (which divide x61 and no smaller xk1):
x61x4+x3x1x3+2x2+2x+1x2x+1x5+x4+x3+x2+x+1x4x3+x1x32x2+2x1x5x4+x3x2+x1x4+x2+1x3+1
giving
P6(x)=x6+2x5+3x4+5x3+2x2+5x
Also define
QN(x)=n=1NPn(x)
It’s given that Q10(x)=x10+3x9+3x8+7x7+8x6+14x5+11x4+18x3+12x2+23x and Q10(2)=5598.

Find Q107(2). Give your answer modulo 1 000 000 007.


成圆多项式

首一多项式是指最高次项系数为1的单变量多项式。

定义F为所有整系数首一多项式(包括常数多项式p(x)=1)构成的集合。对于多项式p(x)F,若存在q(x)F和正整数n使得p(x)q(x)=xn1,则称p(x)成圆多项式。若n是满足上述条件的最小正整数,则称p(x)n-成圆多项式

定义Pn(x)为所有n-成圆多项式的和。例如,总共有十个6-成圆多项式(整除x61但不整除任意更小的xk1):
x61x4+x3x1x3+2x2+2x+1x2x+1x5+x4+x3+x2+x+1x4x3+x1x32x2+2x1x5x4+x3x2+x1x4+x2+1x3+1
因此
P6(x)=x6+2x5+3x4+5x3+2x2+5x
再定义
QN(x)=n=1NPn(x)
已知Q10(x)=x10+3x9+3x8+7x7+8x6+14x5+11x4+18x3+12x2+23xQ10(2)=5598

Q107(2),并将你的答案对1 000 000 007取余。


0 comments
Anonymous
Markdown is supported

Be the first person to leave a comment!