0%

Problem 802


Problem 802


Iterated Composition

Let R2 be the set of pairs of real numbers (x,y). Let π=3.14159.

Consider the function f from R2 to R2 defined by f(x,y)=(x2xy2,2xyy+π), and its n-th iterated composition f(n)(x,y)=f(f(f(x,y))). For example f(3)(x,y)=f(f(f(x,y))). A pair (x,y) is said to have period n if n is the smallest positive integer such that f(n)(x,y)=(x,y).

Let P(n) denote the sum of x-coordinates of all points having period not exceeding n. Interestingly, P(n) is always an integer. For example, P(1)=2, P(2)=2, P(3)=4.

Find P(107) and give your answer modulo 1 020 340 567.


迭代复合函数

R2为所有实数对(x,y)构成的集合。记π=3.14159

考虑由R2映射到R2的函数f,其定义为f(x,y)=(x2xy2,2xyy+π),以及其n次迭代复合函数f(n)(x,y)=f(f(f(x,y)))。举例来说,f(3)(x,y)=f(f(f(x,y)))。对于实数对(x,y),若存在最小的正整数n使得f(n)(x,y)=(x,y),则称该实数对的周期为n

P(n)为所有周期不超过n的实数对的x轴坐标之和。有趣的是,P(n)始终是整数。例如,P(1)=2P(2)=2P(3)=4

P(107)并将你的答案对1 020 340 567取余。


0 comments
Anonymous
Markdown is supported

Be the first person to leave a comment!