0%

Problem 804


Problem 804


Counting Binary Quadratic Representations

Let g(n) denote the number of ways a positive integer n can be represented in the form:
x2+xy+41y2
where x and y are integers. For example, g(53)=4 due to (x,y)(4,1),(3,1),(3,1),(4,1).

Define T(N)=n=1Ng(n). You are given T(103)=474 and T(106)=492128.

Find T(1016).


二元二次型表示计数

g(n)为将正整数n表示成如下二元二次型的方式数目:
x2+xy+41y2
其中xy均为整数。例如,g(53)=4,对应的方式为(x,y)(4,1),(3,1),(3,1),(4,1)

定义T(N)=n=1Ng(n)。已知T(103)=474T(106)=492128

T(1016)


0 comments
Anonymous
Markdown is supported

Be the first person to leave a comment!