Loops of Ropes
Given a circle and an integer , we perform the following operations.
In step , we choose two uniformly random points and on .
In step (), we first choose a uniformly random point on and connect the points and with a red rope; then choose a uniformly random point on and connect the points and with a blue rope.
In step , we first connect the points and with a red rope; then connect the points and with a blue rope.
Each rope is straight between its two end points, and lies above all previous ropes.
After step , we get a loop of red ropes, and a loop of blue ropes.
Sometimes the two loops can be separated, as in the left figure below; sometimes they are “linked”, hence cannot be separated, as in the middle and right figures below.

Let be the probability that the two loops can be separated.
For example, and .
Find , rounded to digits after decimal point.
绳环
考虑圆和整数,我们进行如下操作。
在第步,我们在圆上均匀随机地选择两个点和。
在第步(), 我们先在圆上均匀随机地选择一个点并将点和点用红绳连接,再在圆上均匀随机地选择一个点,并将点和点用蓝绳连接。
在第步,我们先将点和点用红绳连接,再将点和点用蓝绳连接。
每条绳在其连接的端点之间都是直线,且都位于所有现有绳的上方。
在完成第步之后,我们得到了一个红绳环和一个蓝绳环。
有时这两个绳环可以拆开,如下图左所示。有时这两个绳环相互缠绕,无法拆开,如下图中和下图右所示。

记为两个绳环可以拆开的概率。
例如,,。
求,并将你的答案保留小数点后位。
Gitalking ...