0%

Problem 807


Problem 807


Loops of Ropes

Given a circle C and an integer n>1, we perform the following operations.

In step 0, we choose two uniformly random points R0 and B0 on C.

In step i (1i<n), we first choose a uniformly random point Ri on C and connect the points Ri1 and Ri with a red rope; then choose a uniformly random point Bi on C and connect the points Bi1 and Bi with a blue rope.

In step n, we first connect the points Rn1 and R0 with a red rope; then connect the points Bn1 and B0 with a blue rope.

Each rope is straight between its two end points, and lies above all previous ropes.

After step n, we get a loop of red ropes, and a loop of blue ropes.

Sometimes the two loops can be separated, as in the left figure below; sometimes they are “linked”, hence cannot be separated, as in the middle and right figures below.

Let P(n) be the probability that the two loops can be separated.

For example, P(3)=1120 and P(5)0.4304177690.

Find P(80), rounded to 10 digits after decimal point.


绳环

考虑圆C和整数n>1,我们进行如下操作。

在第0步,我们在圆C上均匀随机地选择两个点R0B0

在第i步(1i<n), 我们先在圆C上均匀随机地选择一个点Ri并将点Ri1和点Ri用红绳连接,再在圆C上均匀随机地选择一个点Bi,并将点Bi1和点Bi用蓝绳连接。

在第n步,我们先将点Rn1和点R0用红绳连接,再将点Bn1和点B0用蓝绳连接。

每条绳在其连接的端点之间都是直线,且都位于所有现有绳的上方。

在完成第n步之后,我们得到了一个红绳环和一个蓝绳环。

有时这两个绳环可以拆开,如下图左所示。有时这两个绳环相互缠绕,无法拆开,如下图中和下图右所示。

P(n)为两个绳环可以拆开的概率。

例如,P(3)=1120P(5)0.4304177690

P(80),并将你的答案保留小数点后10位。


Gitalking ...