0%

Problem 813


Problem 813


XOR-Powers

We use xy to be the bitwise XOR of x and y.

Define the XOR-product of x and y, denoted by xy, similar to a long multiplication in base 2, except that the intermediate results are XORed instead of the usual integer addition.

For example, 1111=69, or in base 2, 1011210112=10001012:
1111101121111101121111101121111011291101129991110001012
Further we define P(n)=11n=111111n. For example P(2)=69.

Find P(812128). Give your answer modulo 109+7.


异或幂

xyxy按位异或的结果。

我们定义一种新运算,称为xy异或积并记作xy。这种运算类似于对xy的二进制表示做长乘法,但是将其中的相加替换为异或。

例如,1111=69,或用二进制表示写作1011210112=10001012
1111101121111101121111101121111011291101129991110001012
进一步定义P(n)=11n=111111n,例如P(2)=69

P(812128),并将你的答案对109+7取余。


Gitalking ...