0%

Problem 817


Problem 817


Digits in Squares

Define m=M(n,d) to be the smallest positive integer such that when m2 is written in base n it includes the base n digit d. For example, M(10,7)=24 because if all the squares are written out in base 10 the first time the digit 7 occurs is in 242=576. M(11,10)=19 as 192=361=2A911.

Find d=1105M(p,pd) where p=109+7.


平方中的数字

考虑所有n进制表示包含数字d的平方数m2,并记其算术平方根的最小值为m=M(n,d)。例如,M(10,7)=24,因为10进制下最小的包含数字7的平方数是252=576。类似可得M(11,10)=19,因为192=361=2A911

d=1105M(p,pd),其中p=109+7


Gitalking ...