0%

Problem 821


Problem 821


123-Separable

A set, S, of integers is called 123-separable if S, 2S and 3S are disjoint. Here 2S and 3S are obtained by multiplying all the elements in S by 2 and 3 respectively.

Define F(n) to be the maximum number of elements of
(S2S3S){1,2,3,,n}
where S ranges over all 123-separable sets.

For example, F(6)=5 can be achieved with either S={1,4,5} or S={1,5,6}.

You are also given F(20)=19.

Find F(1016).


123可分离集合

若整数集合S满足S2S3S互不相交,则称其为123可分离集合。其中,2S3S分别指将S中的所有元素乘以23所构成的集合。

考虑所有123可分离集合S,定义F(n)为集合
(S2S3S){1,2,3,,n}
中元素的最大数目。

例如,F(6)=5,对应的集合为S={1,4,5}S={1,5,6}

已知F(20)=19

F(1016)


Gitalking ...