0%

Problem 831


Problem 831


Triple Product

Let g(m) be the integer defined by the following double sum of products of binomial coefficients:

j=0mi=0j(1)ji(mj)(ji)(j+5+6ij+5).

You are given that g(10)=127278262644918.

Its first (most significant) five digits are 12727.

Find the first ten digits of g(142857) when written in base 7.


三个二项式系数的乘积

g(m)为如下表达式(对一系列二项式系数的乘积进行双重求和)所定义的整数:

j=0mi=0j(1)ji(mj)(ji)(j+5+6ij+5).

已知g(10)=127278262644918

它的前五位数字是12727

g(142857)7进制表示的前十位数字。


Gitalking ...