Problem 831 题目发布于 2023-02-26 翻译更新于 2023-12-30 Problem 831 Triple ProductLet g(m) be the integer defined by the following double sum of products of binomial coefficients: ∑j=0m∑i=0j(−1)j−i(mj)(ji)(j+5+6ij+5). You are given that g(10)=127278262644918.Its first (most significant) five digits are 12727.Find the first ten digits of g(142857) when written in base 7. 三个二项式系数的乘积记g(m)为如下表达式(对一系列二项式系数的乘积进行双重求和)所定义的整数: ∑j=0m∑i=0j(−1)j−i(mj)(ji)(j+5+6ij+5). 已知g(10)=127278262644918。它的前五位数字是12727。求g(142857)的7进制表示的前十位数字。
Gitalking ...