0%

Problem 832


Problem 832


Mex Sequence

In this problem is used to represent the bitwise exclusive or of two numbers.
Starting with blank paper repeatedly do the following:

  1. Write down the smallest positive integer a which is currently not on the paper;
  2. Find the smallest positive integer b such that neither b nor (ab) is currently on the paper. Then write down both b and (ab).

After the first round 1,2,3 will be written on the paper. In the second round a=4 and because (45), (46) and (47) are all already written b must be 8.

After n rounds there will be 3n numbers on the paper. Their sum is denoted by M(n).

For example, M(10)=642 and M(1000)=5432148.

Find M(1018). Give your answer modulo 1 000 000 007.


最小排除值序列

在本题中,符号被用于表示两个数的按位异或
请拿一张空白的纸,并不断重复如下操作:

  1. 写下最小的、未被写在纸上的正整数a
  2. 求最小的、使得b(ab)都未被写在纸上的正整数b,并将b(ab)都写在纸上。

经过第一轮操作,1,2,3将被写在纸上。在第二轮中a=4,同时因为(45)(46)(47)都已经写在纸上了,因此b只能是8

经过n轮操作,纸上将会有3n个数,记这些数之和为M(n)

例如,M(10)=642M(1000)=5432148

M(1018),并将你的答案对1 000 000 007取余。

译注:原标题中的“Mex”是“Minimum Excluded Value”的简写,因此翻译为“最小排除值”。


Gitalking ...