0%

Problem 842


Problem 842


Irregular Star Polygons

Given n equally spaced points on a circle, we define an n-star polygon as an n-gon having those n points as vertices. Two n-star polygons differing by a rotation/reflection are considered different.

For example, there are twelve 5-star polygons shown below.

0842_5-agons.jpg

For an n-star polygon S, let I(S) be the number of its self intersection points.

Let T(n) be the sum of I(S) over all n-star polygons S.

For the example above T(5)=20 because in total there are 20 self intersection points.

Some star polygons may have intersection points made from more than two lines. These are only counted once. For example, S, shown below is one of the sixty 6-star polygons. This one has I(S)=4.

0842_6-agon.jpg

You are also given that T(8)=14640.

Find n=360T(n). Give your answer modulo (109+7).


不规则星形多边形

在圆上取n个等距离的点,称以这n个点为顶点的n边形为n星多边形。若两个n星多边形可以通过旋转或翻折重合,仍视为不同的n星多边形。

例如,共有十二个不同的5星多边形,如下图所示:

0842_5-agons.jpg

对于任意n星多边形S,记I(S)为其各边自交产生的交点数目。

T(n)为所有n星多边形S对应的I(S)之和。

如上图所示,T(5)=20,因为所有5星多边形各边自交共产生20个交点。

有些交点可能由多条边同时相交产生,这样的交点只被计算一次。例如,下图所示是六十种6星多边形的其中之一,其对应的I(S)=4

0842_6-agon.jpg

已知T(8)=14640

n=360T(n),并将你的答案对(109+7)取余。


0 comments
Anonymous
Markdown is supported

Be the first person to leave a comment!