Irregular Star Polygons
Given equally spaced points on a circle, we define an -star polygon as an -gon having those points as vertices. Two -star polygons differing by a rotation/reflection are considered different.
For example, there are twelve -star polygons shown below.
For an -star polygon , let be the number of its self intersection points.
Let be the sum of over all -star polygons .
For the example above because in total there are self intersection points.
Some star polygons may have intersection points made from more than two lines. These are only counted once. For example, , shown below is one of the sixty -star polygons. This one has .
You are also given that .
Find . Give your answer modulo .
不规则星形多边形
在圆上取个等距离的点,称以这个点为顶点的边形为星多边形。若两个星多边形可以通过旋转或翻折重合,仍视为不同的星多边形。
例如,共有十二个不同的星多边形,如下图所示:
对于任意星多边形,记为其各边自交产生的交点数目。
记为所有星多边形对应的之和。
如上图所示,,因为所有星多边形各边自交共产生个交点。
有些交点可能由多条边同时相交产生,这样的交点只被计算一次。例如,下图所示是六十种星多边形的其中之一,其对应的。
已知。
求,并将你的答案对取余。
Be the first person to leave a comment!