0%

Problem 844


Problem 844


k-Markov Numbers

Consider positive integer solutions to
a2+b2+c2=3abc

For example, (1,5,13) is a solution. We define a 3-Markov number to be any part of a solution, so 1, 5 and 13 are all 3-Markov numbers. Adding distinct 3-Markov numbers 103 would give 2797.

Now we define a k-Markov number to be a positive integer that is part of a solution to:
i=1kxi2=ki=1kxi,xi are positive integers

Let Mk(N) be the sum of k-Markov numbers N. Hence M3(103)=2797, also M8(108)=131493335.

Define S(K,N)=k=3KMk(N). You are given S(4,102)=229 and S(10,108)=2383369980.

Find S(1018,1018). Give your answer modulo 1 405 695 061.


k-马尔科夫数

考虑如下方程的正整数解:
a2+b2+c2=3abc

例如,其中一组解是(1,5,13)。定义3-马尔科夫数为上述解中的任意一个数,因此1513都是3-马尔科夫数。
所有不同的、小于等于1033-马尔科夫数之和为2797

进一步定义k-马尔科夫数为下列方程的解中的任意一个数:
i=1kxi2=ki=1kxi,xi为正整数

Mk(N)为所有小于等于Nk-马尔科夫数之和。因此,M3(103)=2797M8(108)=131493335

定义S(K,N)=k=3KMk(N)。已知S(4,102)=229S(10,108)=2383369980

S(1018,1018),并将你的答案对1 405 695 061取余。


Gitalking ...