0%

Problem 847


Problem 847


Jack’s Bean

Jack has three plates in front of him. The giant has N beans that he distributes to the three plates. All the beans look the same, but one of them is a magic bean. Jack doesn’t know which one it is, but the giant knows.

Jack can ask the giant questions of the form: “Does this subset of the beans contain the magic bean?” In each question Jack may choose any subset of beans from a single plate, and the giant will respond truthfully.

If the three plates contain a, b and c beans respectively, we let h(a,b,c) be the minimal number of questions Jack needs to ask in order to guarantee he locates the magic bean. For example, h(1,2,3)=3 and h(2,3,3)=4.

Let H(N) be the sum of h(a,b,c) over all triples of non-negative integers a, b, c with 1a+b+cN.

You are given: H(6)=203 and H(20)=7718.

A repunit, Rn, is a number made up with n digits all ‘1’. For example, R3=111 and H(R3)=1634144.

Find H(R19). Give your answer modulo 1 000 000 007.


杰克的魔法豆子

杰克面前有三个盘子,巨人将N颗豆子分在三个盘子中。这些豆子看起来都一样,但其中有一颗是魔法豆子。杰克不知道哪一颗才是魔法豆子,但巨人知道。

杰克可以从任意一个盘子中选择任意一部分豆子,并向巨人提问:“在这些豆子中有魔法豆子吗?”巨人总是如实回答。

若三个盘子中分别由abc颗豆子,记h(a,b,c)为杰克能够保证找到魔法豆子最少需要提问的次数。例如,h(1,2,3)=3h(2,3,3)=4

H(N)为所有满足1a+b+cN的非负整数三元组abc对应的h(a,b,c)之和。

已知:H(6)=203H(20)=7718

循环单位数Rn是指由n个数字1组成的数。例如,R3=111H(R3)=1634144

H(R19),并将你的答案对1 000 000 007取余。


Gitalking ...