0%

Problem 850


Problem 850


Fractions of Powers

Any positive real number x can be decomposed into integer and fractional parts x+{x}, where x (the floor function) is an integer, and 0{x}<1.

For positive integers k and n, define the function
fk(n)=i=1n{ikn}
For example, f5(10)=4.5 and f7(1234)=616.5.

Let
S(N)=k=1k oddNn=1Nfk(n)
You are given that S(10)=100.5 and S(103)=123687804.

Find S(33557799775533). Give your answer modulo 977676779.


幂的小数部分

任意正实数x都可以分解成整数部分和小数部分x+{x},其中x(下取整函数)是一个整数,而0{x}<1

对于正整数kn,定义函数
fk(n)=i=1n{ikn}
例如,f5(10)=4.5f7(1234)=616.5


S(N)=k=1k为奇数Nn=1Nfk(n)
已知S(10)=100.5S(103)=123687804

S(33557799775533),并将你的答案对977676779取余。


0 comments
Anonymous
Markdown is supported

Be the first person to leave a comment!