Problem 851 题目发布于 2023-07-09 翻译更新于 2024-01-02 Problem 851 SOP and POSLet n be a positive integer and let En be the set of n-tuples of strictly positive integers. For u=(u1,⋯,un) and v=(v1,⋯,vn) two elements of En, we define: the Sum Of Products of u and v, denoted by ⟨u,v⟩, as the sum ∑i=1nuivi; the Product Of Sums of u and v, denoted by u⋆v, as the product ∏i=1n(ui+vi). Let Rn(M) be the sum of u⋆v over all ordered pairs (u,v) in En such that ⟨u,v⟩=M.For example: R1(10)=36, R2(100)=1873044, R2(100!)≡446575636mod109+7. Find R6(10000!). Give your answer modulo 109+7. 积之和与和之积对于正整数n,记En为所有n元正整数组构成的集合。 对于En的任意两个元素u=(u1,⋯,un)和v=(v1,⋯,vn),定义: u和v的积之和,记作⟨u,v⟩,为∑i=1nuivi; u和v的和之积,记作u⋆v,为∏i=1n(ui+vi)。 考虑所有En中满足⟨u,v⟩=M的有序对(u,v),并记其对应的u⋆v之和为Rn(M)。例如,R1(10)=36,R2(100)=1873044,R2(100!)≡446575636mod109+7。 求R6(10000!),并将你的答案对109+7取余。
Gitalking ...