0%

Problem 851


Problem 851


SOP and POS

Let n be a positive integer and let En be the set of n-tuples of strictly positive integers.

For u=(u1,,un) and v=(v1,,vn) two elements of En, we define:

  • the Sum Of Products of u and v, denoted by u,v, as the sum i=1nuivi;
  • the Product Of Sums of u and v, denoted by uv, as the product i=1n(ui+vi).

Let Rn(M) be the sum of uv over all ordered pairs (u,v) in En such that u,v=M.

For example: R1(10)=36, R2(100)=1873044, R2(100!)446575636mod109+7.

Find R6(10000!). Give your answer modulo 109+7.


积之和与和之积

对于正整数n,记En为所有n元正整数组构成的集合。

对于En的任意两个元素u=(u1,,un)v=(v1,,vn),定义:

  • uv积之和,记作u,v,为i=1nuivi
  • uv和之积,记作uv,为i=1n(ui+vi)

考虑所有En中满足u,v=M的有序对(u,v),并记其对应的uv之和为Rn(M)

例如,R1(10)=36R2(100)=1873044R2(100!)446575636mod109+7

R6(10000!),并将你的答案对109+7取余。


Gitalking ...