0%

Problem 855


Problem 855


Delphi Paper

Given two positive integers a,b, Alex and Bianca play a game in ab rounds. They begin with a square piece of paper of side length 1.

In each round Alex divides the current rectangular piece of paper into a×b pieces using a1 horizontal cuts and b1 vertical ones. The cuts do not need to be evenly spaced. Moreover, a piece can have zero width/height when a cut coincides with another cut or the edge of the paper. The pieces are then numbered 1,2,,ab starting from the left top corner, moving from left to right and starting from the left of the next row when a row is finished.

Then Bianca chooses one of the pieces for the game to continue on. However, Bianca must not choose a piece with a number she has already chosen during the game.

Bianca wants to minimize the area of the final piece of paper while Alex wants to maximize it. Let S(a,b) be the area of the final piece assuming optimal play.

For example, S(2,2)=1/36 and S(2,3)=1/18005.5555555556e4.

Find S(5,8). Give your answer in scientific notation rounded to ten significant digits after the decimal point. Use a lowercase e to separate the mantissa and the exponent.


德尔菲分纸法

亚历克斯和比安卡在玩游戏,这个游戏需要进行ab轮,其中ab均为正整数。游戏开始时,需要一张边长为1的正方形纸。

在每一轮中,亚历克斯在纸上横切a1刀,竖切b1刀,将其分成a×b块长方形纸片。刀与刀间的距离无需相同,而且可以相互重合,此时对应的长方形长度或宽度为零。随后,从纸的左上角开始,从上至下、从左至右依次将长方形纸片编号为1,2,,ab

随后,比安卡选择其中一张长方形纸片并下一轮游戏,但比安卡所选纸片的编号不能与之前轮数中的选择相同。

比安卡的目标是使游戏结束时纸片的面积尽可能小,而亚历克斯的目标则是使之尽可能大。记S(a,b)为双方都采取最优策略时最终的纸片面积。

例如,S(2,2)=1/36S(2,3)=1/18005.5555555556e4

S(5,8),并将你的答案用科学计数法表示(用小写字母e分隔尾数和指数),保留十位小数。


Gitalking ...