0%

Problem 860


Problem 860


Gold and Silver Coin Game

Gary and Sally play a game using gold and silver coins arranged into a number of vertical stacks, alternating turns. On Gary’s turn he chooses a gold coin and removes it from the game along with any other coins sitting on top. Sally does the same on her turn by removing a silver coin. The first player unable to make a move loses.

An arrangement is called fair if the person moving first, whether it be Gary or Sally, will lose the game if both play optimally.

Define F(n) to be the number of fair arrangements of n stacks, all of size 2. Different orderings of the stacks are to be counted separately, so F(2)=4 due to the following four arrangements:

0860_diag3.jpg

You are also given F(10)=63594.

Find F(9898). Give your answer modulo 989898989.


金银硬币游戏

盖瑞和萨利在玩一个游戏,游戏开始时有若干堆竖直堆放的金币和银币,两人轮流行动。轮到盖瑞时,他可以任选一枚金币,并将这枚金币和所有堆放在其上方的硬币移出游戏;轮到萨利时则是可以任选一枚银币。首先无法行动的玩家输掉游戏。

如果一个初始局面使得,无论先行玩家是盖瑞还是萨利,他在采取最优策略的情况下都必败,则称之为公平初始局面。

定义F(n)为所有包含n堆、每堆各2枚硬币的公平初始局面的数目。堆的顺序不同时视为不同的初始局面,因此F(2)=4,相应的四种初始局面如下所示:

0860_diag3.jpg

已知F(10)=63594

F(9898),并对989898989取余作为你的答案。


Gitalking ...