0%

Problem 865


Problem 865


Triplicate Numbers

A triplicate number is a positive integer such that, after repeatedly removing three consecutive identical digits from it, all its digits can be removed.

For example, the integer 122555211 is a triplicate number:
122555211122211111.
On the other hand, neither 663633 nor 9990 are triplicate numbers.

Let T(n) be how many triplicate numbers are less than 10n.

For example, T(6)=261 and T(30)=5576195181577716.

Find T(104). Give your answer modulo 998244353.


三消数

对于任意正整数,不断地从中消除连续三个相同数字,若最终可以将其完全消除,则称之为三消数

例如,整数122555211是三消数:
122555211122211111.
反之,6636339990都不是三消数。

T(n)为所有小于10n的三消数的数量.

例如,T(6)=261T(30)=5576195181577716

T(104),并对998244353取余作为你的答案。


0 comments
Anonymous
Markdown is supported

Be the first person to leave a comment!